4.7 Review

Genetic manipulation of glycine decarboxylation

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 54, 期 387, 页码 1523-1535

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erg171

关键词

Arabidopsis; genetic engineering; glycine decarboxylase; mutant analysis; one-carbon metabolism; photo respiration; photosynthesis; serine hydroxymethyltransferase

向作者/读者索取更多资源

The glycine-serine interconversion, catalysed by glycine decarboxylase and serine hydroxymethyltransferase, is an important reaction of primary metabolism in all organisms including plants, by providing one-carbon units for many biosynthetic reactions. In plants, in addition, it is an integral part of the photorespiratory metabolic pathway and produces large amounts of photorespiratory CO(2) within mitochondria. Although controversial, there is significant evidence that this process, by the relocation of glycine decarboxylase within the leaves from the mesophyll to the bundle-sheath, contributed to the evolution of C(4) photosynthesis. In this review, some aspects of current knowledge about glycine decarboxylase and serine hydroxymethyltransferase and the role of these enzymes in metabolism, about the corresponding genes and their expression as well as about mutants and anti-sense plants related to these genes or processes will be summarized and discussed. From a comparison of the available information about the number and organization of GDC and SHMT genes in the genomes of Arabidopsis thaliana and Oryza sativa it appears that these and, possibly, other genes related to photorespiration, are similarly organized even in only very distantly related angiosperms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据