4.4 Article

A neural network inverse model for a shape memory alloy wire actuator

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X03034628

关键词

shape memory alloy; neural networks; hysteresis compensation

向作者/读者索取更多资源

Tracking control of shape memory alloy (SMA) actuators is essential in many applications such as vibration controls. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, open-loop control design has proven inadequate for tracking control of these actuators. Aimed at eliminating the position sensor to reduce cost of an SMA actuator system, in this paper, a neural network open loop controller is proposed for tracking control of an SMA actuator. A test stand, including a titanium-nickel (TiNi, or Nitinol) SMA wire actuator, a position sensor, bias springs, and a programmable current amplifier, is used to generate training data and to verify the neural networks open loop controller. A digital data acquisition and real-time control system was used to record experimental data and to implement the control strategy. Based on the training data obtained from the test stand, two neural networks are used to respectively model the forward and inverse hysteresis relations between the applied voltage and the displacement of the SMA wire actuator. To control the SMA actuator without using a position sensor, the neural network inverse model is used as a feedforward controller. The experimental results demonstrate the effectiveness of the neural network open loop controller for tracking control of the SMA wire actuator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据