4.7 Article

Monte Carlo studies of three-dimensional O(1) and O(4) φ4 theory related to Bose-Einstein condensation phase transition temperatures -: art. no. 066702

期刊

PHYSICAL REVIEW E
卷 67, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.67.066702

关键词

-

向作者/读者索取更多资源

The phase transition temperature for the Bose-Einstein condensation (BEC) of weakly interacting Bose gases in three dimensions is known to be related to certain nonuniversal properties of the phase transition of three-dimensional O(2) symmetric phi(4) theory. These properties have been measured previously in Monte Carlo lattice simulations. They have also been approximated analytically, with moderate success, by large N approximations to O(N) symmetric phi(4) theory. To begin investigating the region of validity of the large N approximation in this application, the same Monte Carlo technique developed for the O(2) model [P. Arnold and G. Moore, Phys. Rev. E 64, 066113 (2001)] to O(1) and O(4) theories has been applied. The results indicate that there might exist some theoretically unanticipated systematic errors in the extrapolation of the continuum value from lattice Monte Carlo results. The final results show that the difference between simulations and next-to-leading order large N calculations does not improve significantly from N=2 to N=4. This suggests that one would need to simulate yet larger N's to see true large N scaling of the difference. Quite unexpectedly (and presumably accidentally), the Monte Carlo result for N=1 seems to give the best agreement with the large N approximation among the three cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据