4.0 Article

Developmental D-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory

期刊

SYNAPSE
卷 48, 期 3, 页码 138-148

出版社

WILEY-LISS
DOI: 10.1002/syn.10159

关键词

maze learning; spatial learning; amphetamines; rats; ontogeny; hippocampus

资金

  1. NIDA NIH HHS [DA05740, DA05851, DA06733] Funding Source: Medline
  2. NIEHS NIH HHS [ES07051] Funding Source: Medline

向作者/读者索取更多资源

In previous studies, we have shown that P11-20 treatment with D-methamphetamine (MA) (10 mg/kg x 4/day at 2-h intervals) induces impairments in spatial learning and memory in the Morris water maze after the offspring reach adulthood. Using a split-litter, multiple dose, design (0, 5, 10, and 15 mg/kg MA administered s.c. 4/day at 2-h intervals), the spatial learning effect was further explored with a multiple shifted platform (reversal), reference memory-based procedure and a working memory procedure. Prior to spatial learning, animals were first tested for swimming ability (in a straight swimming channel), sequential learning (in the Cincinnati multiple-T water maze), and proximal cue learning (in the Morris water maze). Rats were then assessed in the hidden platform, reference memory-based spatial version of the Morris maze for acquisition and on five subsequent phases in which the platform was moved to new locations. After the reference memory-based, fixed platform position learning phases, animals were tested in the trial-dependent, matching-to-sample, working memory version of the Morris maze. No group differences were found in straight channel, sequential maze, or cued Morris maze performance. By contrast, all MA groups were impaired in spatial learning during acquisition, multiple shift, and shifted with a reduced platform phases of reference memory-based learning. In addition, MA animals were impaired on memory (probe) trials during the acquisition and shifted with a reduced platform phases of learning. No effects on trial-dependent, matching-to-sample, working memory were found. The findings demonstrate that neonatal treatment with MA induces a selective impairment of reference memory-based spatial learning while sparing sequential, cued, and working memory-based learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据