4.7 Article Proceedings Paper

SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength

期刊

JOURNAL OF INVESTIGATIVE DERMATOLOGY
卷 120, 期 6, 页码 949-955

出版社

ELSEVIER SCIENCE INC
DOI: 10.1046/j.1523-1747.2003.12241.x

关键词

skin; extracellular matrix; transgenic collagen

资金

  1. NHLBI NIH HHS [HL 59574] Funding Source: Medline
  2. NIAMS NIH HHS [AR 02220] Funding Source: Medline
  3. NIGMS NIH HHS [GM 40711] Funding Source: Medline

向作者/读者索取更多资源

Although collagen and elastic fibers are among the major structural constituents responsible for the mechanical properties of skin, proteins that associate with these components are also important for directing formation and maintaining the stability of these fibers. We present evidence that SPARC (secreted protein acidic and rich in cysteine) contributes to collagen fibril formation in the dermis. The skin of SPARC-null adult mice had approximately half the tensile strength as that of wild-type skin. Moreover, the collagen content of SPARC-null skin, as measured by hydroxyproline analysis, was substantially reduced in adult mice. At 2 weeks of age, no differences in collagen content were observed; within 2 months, however, the dermis of SPARC-null mice displayed a reduced collagen content that persisted through adulthood until approximate to20 months, when collagen levels of SPARC-null skin approximated those of wild-type controls. The collagen fibrils present in SPARC-null skin were smaller and more uniform in diameter, in comparison with those of wild-type skin. At 5 months of age, the average fibril diameter in SPARC-null versus wild-type skin was 60.2 nm versus 87.9 nm, respectively. Extraction of soluble dermal collagen revealed a relative increase in collagen VI, accompanied by a decrease in collagen I, in SPARC-null mice. A reduction in the relative amounts of higher-molecular weight collagen complexes was also observed in extracts of dermis from SPARC-null animals. Thus the absence of SPARC compromises the mechanical properties of the dermis, an effect that we attribute, at least in part, to the changes in the structure and composition of its collagenous extracellular matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据