4.7 Article Proceedings Paper

Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 178, 期 1-2, 页码 75-87

出版社

ELSEVIER
DOI: 10.1016/S0378-1127(03)00054-9

关键词

erosion; fire; sediment; overland flow; debris slides; debris flows; ravel

类别

向作者/读者索取更多资源

The objective of this paper is to provide a general overview of the influence of wildland fires on the erosional processes common to the forested landscapes of the western United States. Wildfire can accelerate erosion rates because vegetation is an important factor controlling erosion. There can be great local and regional differences, however, in the relative importance of different erosional processes because of differences in prevailing climate, geology and topography; because of differences in the degree to which vegetation regulates erosional processes; and because of differences in the types of fire regimes that disrupt vegetative cover. Surface erosion, caused by overland flow, is a dominant response to wildfire in the Interior Northwest and Northern Rocky Mountains (Interior Region). A comparison of measured postfire infiltration rates and long-term records of precipitation intensity suggest that surface runoff from infiltration-excess overland flow should also occur in the Coastal and Cascade Mountains of the Pacific Northwest after fires, but this has not been documented in the literature. Debris slides and debris flows occur more frequently after wildfire in the Interior Region and in the Coastal and Cascade Mountains of the Pacific Northwest (Pacific Northwest Region). Debris flows can be initiated from either surface runoff or from soil-saturation-caused debris slides. In the Pacific Northwest Region, debris flows are typically initiated as debris slides, caused by soil saturation and loss of soil cohesion as roots decay following fire. In the Interior Region, both overland-flow-caused and debris-slide-caused debris flows occur after wildfire. Surface erosion, debris slides, and debris flows all occur during intense storms. Thus, their probability of occurrence depends upon the probability of intense storms occurring during a window of increased susceptibility to surface erosion and mass wasting following intense wildfire. Published by Elsevier Science B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据