4.6 Article

Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin

期刊

EXPERIMENTAL CELL RESEARCH
卷 286, 期 2, 页码 263-275

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0014-4827(03)00074-0

关键词

myostatin; myoblast; proliferation; differentiation; apoptosis; MyoD; myogenin; p21; cell cycle arrest

向作者/读者索取更多资源

Muscle growth results from a set of complex processes including myogenic transcription factor's expression and activity, cell cycle withdrawal, myoblast fusion in myotubes, and acquisition of an apoptosis-resistant phenotype. Myostatin, a member of the TGFbeta family, described as a strong regulator of myogenesis in vivo Nature 387 (1997), 83; FEBS Lett. 474 (2000), 71 is upregulated during in vitro differentiation Biochem. Biophys. Res. Commun. 280 (2001), 561. To improve characterization of myostatin's myogenic influence, we stably transfected vectors expressing myostatin and myostatin antisense in C2C12 myoblasts. Here, we found that myostatin inhibits cell proliferation and differentiation. Our results also indicate that myogenin is an important target of myostatin. In addition, overexpressed but not endogenous myostatin decreases MyoD protein levels and induces changes in its phosphorylation pattern. We also established that myostatin overexpression reduces the frequency of G0/G1-arrested cells during differentiation. Conversely, inhibition of myostatin synthesis leads to enhanced cell cycle withdrawal and consequently stimulates myoblast differentiation. We examined the expression patterns of the pRb, E2F1, p53, and p21 proteins involved in cell cycle withdrawal. We found that myostatin overexpression increases p21 and p53 expression, as it does accumulation of hypophosphorylated Rb. Interestingly, myostatin overexpression strongly reduced low-mitogen-induced apoptosis, whereas antisense expression induced contrary changes. In conclusion, these data show the influence of overexpressed myostatin on myoblast proliferation, differentiation, and apoptosis is extended to endogenous myostatin. Though some differences in overexpression or inhibition of endogenous myostatin were observed, it appears that myogenin and p21 are essential targets of this growth factor. (C) 2003 Elsevier Science (USA). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据