4.7 Article

Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment

期刊

出版社

AMER THORACIC SOC
DOI: 10.1164/rccm.200205-435OC

关键词

acute respiratory distress syndrome; alveolar mechanics; in vivo microscopy; recruitment maneuver; ventilator-induced lung injury

向作者/读者索取更多资源

We tested the hypothesis that collapsed alveoli opened by a recruitment maneuver would be unstable or recollapse without adequate positive end-expiratory pressure (PEEP) after recruitment. Surfactant deactivation was induced in pigs by Tween instillation. An in vivo microscope was placed on a lung area with significant atelectasis and the following parameters measured: (1) the number of alveoli per field and (2) alveolar stability (i.e., the change in alveolar size from peak inspiration to end expiration). We previously demonstrated that unstable alveoli cause lung injury. A recruitment maneuver (peak pressure = 45 cm H2O, PEEP = 35 cm H2O for 1 minute) was applied and alveolar number and stability were measured. Pigs were then separated into two groups with standard ventilation plus (1) 5 PEEP or (2) 10 PEEP and alveolar number and stability were again measured. The recruitment maneuver opened a significant number of alveoli, which were stable during the recruitment maneuver. Although both 5 PEEP and 10 PEEP after recruitment demonstrated improved oxygenation, alveoli ventilated with 10 PEEP were stable, whereas alveoli ventilated with 5 PEEP showed significant instability. This suggests recruitment followed by inadequate PEEP permits unstable alveoli and may result in ventilator-induced lung injury despite improved oxygenation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据