4.6 Article

Genetic engineering of a suboptimal islet graft with A20 preserves β cell mass and function

期刊

JOURNAL OF IMMUNOLOGY
卷 170, 期 12, 页码 6250-6256

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.170.12.6250

关键词

-

资金

  1. NIDDK NIH HHS [R21DK062601, P01DK53087-05] Funding Source: Medline

向作者/读者索取更多资源

Transplantation of an excessive number of islets of Langerhans (two to four pancreata per recipient) into patients with type I diabetes is required to restore euglycemia. Hypoxia, nutrient deprivation, local inflammation, and the beta cell inflammatory response (up-regulation of NF-kappaB-dependent genes such as inos) result in beta cell destruction in the early post-transplantation period. Genetic engineering of islets with anti-inflammatory and antiapoptotic genes may prevent beta cell loss and primary, nonfunction. We have shown in vitro that A20 inhibits NF-kappaB activation in islets and protects from cytokine- and death receptor-mediated apoptosis. In vivo, protection of newly transplanted islets would reduce the number of islets required for successful transplantation. Transplantation of 500 B6/AF(1) mouse islets into syngeneic, diabetic recipients resulted in a cure rate of 100% within 5 days. Transplantation of 250 islets resulted in a cure rate of only 20%. Transplantation of 250 islets overexpressing A20 resulted in a cure rate of 75% with a mean time to cure of 5.2 days, comparable to that achieved with 500 islets. A20-expressing islets preserve functional beta cell mass and are protected from cell death. These data demonstrate that A20 is an ideal cytoprotective gene therapy candidate for islet transplantation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据