4.7 Article

Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs

期刊

出版社

AMER THORACIC SOC
DOI: 10.1164/rccm.200210-1215OC

关键词

lung injury; acute; vascular permeability; functional residual capacity; ventricular function; right

向作者/读者索取更多资源

During mechanical ventilation, lung recruitment attenuates injury caused by high VT, improves oxygenation, and may optimize pulmonary vascular resistance (PVR). We hypothesized that ventilation without recruitment would induce injury in otherwise healthy lungs. Anesthetized rats were ventilated with conventional mechanical ventilation (VT 8 ml/kg; respiratory frequency 40 per minute) and 21% inspired oxygen, with or without a recruitment strategy consisting of recruitment maneuvers plus positive end-expiratory pressure, in the presence or absence of a laparotomy. Additional experiments examined the impact of atelectasis on right ventricular function using echocardiography, as well as functional residual capacity and PVR. Lack of recruitment resulted in reduced overall survival (59% nonrecruited vs. 100% recruited, p < 0.05), increased microvascular leak, greater impairment of oxygenation and lung compliance, increased PVR, and elevated plasma lactate. Echocardiography demonstrated that right ventricular dysfunction occurred in the absence of recruitment. Finally, samples from nonrecruited lungs demonstrated ultrastructural evidence of microvascular endothelial disruption. Although such effects clearly do not occur with comparable magnitude in the clinical context, the current data suggest novel mechanisms (microvascular leak, right ventricular dysfunction) whereby derecruitment may contribute to development of lung injury and adverse systemic outcome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据