4.7 Article

Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests

期刊

REMOTE SENSING OF ENVIRONMENT
卷 85, 期 4, 页码 410-423

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0034-4257(03)00017-8

关键词

MODIS; LAI; FPAR; stochastic radiative transfer; vegetation remote sensing

向作者/读者索取更多资源

This paper presents the analysis of radiative transfer assumptions underlying moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) algorithm for the case of spatially heterogeneous broadleaf forests. Data collected by a Boston University research group during the July 2000 field campaign at the Earth Observing System (EOS) core validation site, Harvard Forest, MA, were used for this purpose. The analysis covers three themes. First, the assumption of wavelength independence of spectral invariants of transport equation, central to the parameterization of the MODIS LAI and FPAR algorithm, is evaluated. The physical interpretation of those parameters is given and an approach to minimize the uncertainties in its retrievals is proposed. Second, the theoretical basis of the algorithm was refined by introducing stochastic concepts which account for the effect of foliage clumping and discontinuities on LAI retrievals. Third, the effect of spatial heterogeneity in FPAR was analyzed and compared to FPAR variation due to diurnal changes in solar zenith angle (SZA) to asses the validity of its static approximation. (C) 2003 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据