4.8 Article

Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA

期刊

ONCOGENE
卷 22, 期 25, 页码 3867-3874

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206649

关键词

ATM; electron microscopy reconstruction; DNA repair

向作者/读者索取更多资源

The human tumor suppressor gene ataxia telangiectasia mutated (ATM) encodes a 3056 amino-acid protein kinase that regulates cell cycle checkpoints. ATM is defective in the neurodegenerative and cancer predisposition syndrome ataxia-telangiectasia. ATM protein kinase is activated by DNA damage and responds by phosphorylating downstream effectors involved in cell cycle arrest and DNA repair, such as p53, MDM2, CHEK2, BRCA1 and H2AX. ATM is probably a component of, or in close proximity to, the double-stranded DNA break-sensing machinery. We have observed purified human ATM protein, ATM-DNA and ATM-DNA-avidin bound complexes by single-particle electron microscopy and obtained three-dimensional reconstructions which show that ATM is composed of two main domains comprising a head and an arm. DNA binding to ATM induces a large conformational movement of the arm-like domain. Taken together, these three structures suggest that ATM is capable of interacting with DNA, using its arm to clamp around the double helix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据