4.7 Article

Optimization of tree-shaped flow distribution structures over a disc-shaped area

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 27, 期 8, 页码 715-723

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/er.907

关键词

constructal theory; dendritic; tree networks; flow geometry; topology optimization; design

向作者/读者索取更多资源

In this paper. we review the fundamental problem of how to design a flow path with minimum overall resistance between one point (O) and many points situated equidistantly on a circle centred at O. This is a fundamental problem in energy engineering: the distribution of fluid, energy, electric power, etc., from points to Surrounding areas. This problem is also fundamental in heat transfer and electronics cooling: how to bathe and cool with a single stream of coolant a disc-shaped area or volume that generates heat at every point. This paper outlines, first, a direct route to the construction of effective tree-shaped flow structures. The starting point is the optimization of the shape of each elemental area, such that the length of the flow path housed by the element is minimized. Proceeding towards larger and more complex structures-from elements to first constructs, second constructs, etc.-the paper develops tree-shaped flow structures between one point and a straight line, as an elemental problem, and a circle and its centre. We also consider the equivalent tree-shaped networks obtained by minimizing the pressure drop at every step of the construction, in accordance with geometric constraints. The construction method is applied to a fluid flow configuration with laminar fully developed flow. It is shown that there is little difference between the two methods. The minimal-length structures perform very close to the fully optimized designs. These results emphasize the robustness of optimized tree-shaped flows. Copyright (C) 2003 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据