4.8 Article

Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes

期刊

CELL
卷 113, 期 7, 页码 935-944

出版社

CELL PRESS
DOI: 10.1016/S0092-8674(03)00429-X

关键词

-

向作者/读者索取更多资源

NPR1 is an essential regulator of plant systemic acquired resistance (SAR), which confers immunity to a broad-spectrum of pathogens. SAR induction results in accumulation of the signal molecule salicylic acid (SA), which induces defense gene expression via activation of NPR1. We found that in an uninduced state, NPR1 is present as an oligomer formed through intermolecular disulfide bonds. Upon SAR induction, a biphasic change in cellular reduction potential occurs, resulting in reduction of NPR1 to a monomeric form. Monomeric NPR1 accumulates in the nucleus and activates gene expression. Inhibition of NPR1 reduction prevents defense gene expression, whereas mutation of Cys82 or Cys216 in NPR1 leads to constitutive monomerization, nuclear localization of the mutant proteins, and defense gene expression. These data provide a missing link between accumulation of SA and activation of NPR1 in the SAR signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据