4.6 Article

Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 26, 页码 23594-23599

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M300212200

关键词

-

向作者/读者索取更多资源

We recently demonstrated that elevation of intracellular glucosylceramide (GlcCer) levels results in increased functional Ca2+ stores in cultured neurons, and suggested that this may be due to modulation of ryanodine receptors (RyaRs) by GlcCer (Korkotian, E., Schwarz, A., Pelled, D., Schwarzmann, G., Segal, M. and Futerman, A. H. (1999) J. Biol. Chem. 274, 21673-21678). We now systematically examine the effects of exogenously added GlcCer, other glycosphingolipids (GSLs) and their lyso-derivatives on Ca2+ release from rat brain microsomes. GlcCer had no direct effect on Ca2+ release, but rather augmented agonist-stimulated Ca2+ release via RyaRs, through a mechanism that may involve the redox sensor of the RyaR, but had no effect on Ca2+ release via inositol 1,4,5-trisphosphate receptors. Other GSLs and sphingolipids, including galactosylceramide, lactosylceramide, ceramide, sphingomyelin, sphingosine 1-phosphate, sphinganine 1-phosphate, and sphingosylphosphorylcholine had no effect on Ca2+ mobilization from rat brain microsomes, but both galactosylsphingosine ( psychosine) and glucosylsphingosine stimulated Ca2+ release, although only galactosylsphingosine mediated Ca2+ release via the RyaR. Finally, we demonstrated that GlcCer levels were similar to10-fold higher in microsomes prepared from the temporal lobe of a type 2 Gaucher disease patient compared with a control, and Ca2+ release via the RyaR was significantly elevated, which may be of relevance for explaining the pathophysiology of neuronopathic forms of Gaucher disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据