4.6 Article

Forced evolution of a herbicide detoxifying glutathione transferase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 26, 页码 23930-23935

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M303620200

关键词

-

向作者/读者索取更多资源

Plant Tau class glutathione transferases (GSTUs) detoxify diphenylether herbicides such as fluorodifen, determining their selectivity in crops and weeds. Using reconstructive PCR, a series of mutant GSTUs were generated from in vitro recombination and mutagenesis of the maize sequences ZmGSTU1 and ZmGSTU2 ( with the prefix Zm designating Zea mays L.). A screen of 5000 mutant GSTUs identified seven enzymes with enhanced fluorodifen detoxifying activity. The best performing enhanced fluorodifen detoxifying mutant (EFD) had activity 19-fold higher than the parent enzymes, with a single point mutation conferring this enhancement. Further mutagenesis of this residue generated an EFD with a 29-fold higher catalytic efficiency toward fluorodifen as compared with the parents but with unaltered catalysis toward other substrates. When expressed in Arabidopsis thaliana, the optimized EFD, but not the parent enzymes, conferred enhanced tolerance to fluorodifen. Molecular modeling predicts that the serendipitous mutation giving the improvement in detoxification is due to the removal of an unfavorable interaction together with the introduction of a favorable change in conformation of residues 107-119, which contribute to herbicide binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据