4.2 Article

Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath):: cloning, sequencing and mutational analysis

期刊

MICROBIOLOGY-SGM
卷 149, 期 -, 页码 1785-1795

出版社

MICROBIOLOGY SOC
DOI: 10.1099/mic.0.26061-0

关键词

-

向作者/读者索取更多资源

The key enzyme in methane metabolism is methane monooxygenase (MMO), which catalyses the oxidation of methane to methanol. Some methanotrophs, including Methylococcus capsulatus (Bath), possess two distinct VIIVIOs. The level of copper in the environment regulates the biosynthesis of the MMO enzymes in these methanotrophs. Under low-copper conditions, soluble MMO (sMMO) is expressed and regulation takes place at the level of transcription. The structural genes of sMMO were previously identified as mmoXYBZ, mmoD and mmoC. Putative transcriptional start sites, containing a sigma(70)- and a sigma(N)-dependent motif, were identified in the 5' region of mmoX. The promoter region of mmoX was mapped using truncated 5' end regions fused to a promoterless green fluorescent protein gene. A 9.5 kb region, adjacent to the sMMO structural gene cluster, was analysed. Downstream (3') from the last gene of the operon, mmoC, four ORFs were found, mmoG, mmoQ, mmoS and mmoR. mmoG shows significant identity to the large subunit of the bacterial chaperonin gene, groEL. In the opposite orientation, two genes, mmoQ and mmoS, showed significant identity to two-component sensor-regulator system genes. Next to mmoS, a gene encoding a putative a sigma(N)-dependent transcriptional activator, mmoR was identified. The mmoG and mmoR genes were mutated by marker-exchange mutagenesis and the effects of these mutations on the expression of sMMO was investigated. sMMO transcription was impaired in both mutants. These results indicate that mmoG and mmoR are essential for the expression of sMMO in Mc. capsulatus (Bath).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据