4.2 Article

Fine-Scale Patterns of Soil and Plant Surface Temperatures in an Alpine Fellfield Habitat, White Mountains, California

期刊

ARCTIC ANTARCTIC AND ALPINE RESEARCH
卷 44, 期 3, 页码 288-295

出版社

INST ARCTIC ALPINE RES
DOI: 10.1657/1938-4246-44.3.288

关键词

-

资金

  1. National Science Foundation [ANI-00331481, CCR-0120778]

向作者/读者索取更多资源

Within alpine environments the interactions of air temperature, solar irradiance, wind, surface albedo, microtopography, and biotic traits all influence patterns of soil and plant canopy temperatures. The resulting mosaic of surface temperatures has a profound impact on ecosystem processes, plant survival, and ecophysiological performance. Previous studies have documented large and persistent variations in microhabitat temperatures over mesoscale alpine terrains. We have used a novel mobile system to examine changes in soil and plant canopy surface temperatures at spatial scales of centimeters and temporal scales of minutes in an alpine fellfield habitat in the White Mountains of California. In the middle of a summer day, the mean surface temperature differences between points 2, 5, and 10 cm apart were 2.9, 5.4, and 9.0 degrees C, respectively, and extreme differences of 18 degrees C or more were found over distances of a few centimeters. These thermal patterns are due not only to substrate material but also to biotic conditions of plant canopy architecture and ecophysiological traits of individual species. The magnitude of temperature variation at these fine scales is greater than the range of warming scenarios in Intergovernmental Panel on Climate Change (IPCC) projections, suggesting that these habitats offer the capacity of significant thermal heterogeneity for plant survival.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据