4.7 Article

X-ray structure of human acid-β-glucosidase, the defective enzyme in Gaucher disease

期刊

EMBO REPORTS
卷 4, 期 7, 页码 704-709

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.embor.embor873

关键词

-

向作者/读者索取更多资源

Gaucher disease, the most common lysosomal storage disease, is caused by mutations in the gene that encodes acid-beta-glucosidase (GlcCerase). Type 1 is characterized by hepatosplenomegaly, and types 2 and 3 by early or chronic onset of severe neurological symptoms. No clear correlation exists between the similar to 200 GlcCerase mutations and disease severity, although homozygosity for the common mutations N370S and L444P is associated with nonneuronopathic and neuronopathic disease, respectively. We report the X-ray structure of GlcCerase at 2.0 Angstrom resolution. The catalytic domain consists of a (beta/alpha)(8) TIM barrel, as expected for a member of the glucosidase hydrolase A clan. The distance between the catalytic residues E235 and E340 is consistent with a catalytic mechanism of retention. N370 is located on the longest alpha-helix (helix 7), which has several other mutations of residues that point into the TIM barrel. Helix 7 is at the interface between the TIM barrel and a separate immunoglobulin- like domain on which L444 is located, suggesting an important regulatory or structural role for this non-catalytic domain. The structure provides the possibility of engineering improved GlcCerase for enzyme-replacement therapy, and for designing structure-based drugs aimed at restoring the activity of defective GlcCerase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据