4.8 Article

Novel index for invasively assessing the coronary microcirculation

期刊

CIRCULATION
卷 107, 期 25, 页码 3129-3132

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.0000080700.98607.D1

关键词

microcirculation; coronary disease; pressure

向作者/读者索取更多资源

Background-A relatively simple, invasive method for quantitatively assessing the status of the coronary microcirculation independent of the epicardial artery is lacking. Methods and Results-By using a coronary pressure wire and modified software, it is possible to calculate the mean transit time of room-temperature saline injected down a coronary artery. The inverse of the hyperemic mean transit time has been shown to correlate with absolute flow. We hypothesize that distal coronary pressure divided by the inverse of the hyperemic mean transit time provides an index of microcirculatory resistance (IMR) that will correlate with true microcirculatory resistance (TMR), defined as the distal left anterior descending (LAD) pressure divided by hyperemic flow, measured with an external ultrasonic flow probe. A total of 61 measurements were made in 9 Yorkshire swine at baseline and after disruption of the coronary microcirculation, both with and without an epicardial LAD stenosis. The mean IMR (16.9+/-6.5 U to 25.9+/-14.4 U, P=0.002) and TMR (0.51+/-0.14 to 0.79+/-0.32 mm Hg . mL(-1) . min(-1), P=0.0001), as well as the % change in IMR (147+/-66%) and TMR (159+/-105%, P=NS versus IMR % change), increased significantly and to a similar degree after disruption of the microcirculation. These changes were independent of the status of the epicardial artery. There was a significant correlation between mean IMR and TMR values, as well as between the % change in IMR and % change in TMR. Conclusion-Measuring IMR may provide a simple, quantitative, invasive assessment of the coronary microcirculation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据