4.7 Article

Acoustic perturbation equations based on flow decomposition via source filtering

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 188, 期 2, 页码 365-398

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0021-9991(03)00168-2

关键词

acoustic perturbation equations; LES; CAA; flow decomposition; source filtering

向作者/读者索取更多资源

A family of acoustic perturbation equations is derived for the simulation of flow-induced acoustic fields in time and space. The mean flow convection and refraction effects are part of the simulation of wave propagation. Using linearized acoustic perturbation equations the unbounded growth of hydrodynamic instabilities in critical mean flows is prevented completely. The perturbation equations are excited by source terms determined from a simulation of the compressible or the incompressible flow problem. Since the simulation of wave propagation contains the convection effects the computational domain of the flow simulation has to comprise only the significant acoustic source region. The acoustic perturbation equations are validated by computing a monopole source in a sheared mean flow, the sound generated due to a spinning vortex pair, and the sound generated by a cylinder in a crossflow. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据