4.8 Article

High-throughput viral expression of cDNA-Green fluorescent protein fusions reveals novel subcellular addresses and identifies unique proteins that interact with plasmodesmata

期刊

PLANT CELL
卷 15, 期 7, 页码 1507-1523

出版社

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.013284

关键词

-

向作者/读者索取更多资源

A strategy was developed for the high-throughput localization of unknown expressed proteins in Nicotiana benthamiana. Libraries of random, partial cDNAs fused to the 5' or 3' end of the gene for green fluorescent protein (GFP) were expressed in planta using a vector based on Tobacco mosaic virus. Viral populations were screened en masse on inoculated leaves using a confocal microscope fitted with water-dipping lenses. Each viral infection site expressed a unique cDNA-GFP fusion, allowing several hundred cDNA-GFP fusions to be screened in a single day. More than half of the members of the library carrying cDNA fusions to the 5' end of gfp that expressed fluorescent fusion proteins displayed discrete, noncytosolic, subcellular localizations. Nucleotide sequence determination of recovered cDNA sequences and subsequent sequence searches showed that fusions of GFP to proteins that had a predicted subcellular address became localized with high fidelity. In a subsequent screen of >20,000 infection foci, 12 fusion proteins were identified that localized to plasmodesmata, a subcellular structure for which very few protein components have been identified. This virus-based system represents a method for high-throughput functional genomic study of plant cell organelles and allows the identification of unique proteins that associate with specific subcompartments within organelles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据