4.5 Article

Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy

期刊

EPILEPSIA
卷 44, 期 7, 页码 877-885

出版社

BLACKWELL PUBLISHING INC
DOI: 10.1046/j.1528-1157.2003.03603.x

关键词

pharmacoresistant epilepsy; kainic acid; adenosine; CCPA; A(1) receptor

向作者/读者索取更多资源

Purpose: Because of the high incidence of pharmacoresistance in the treatment of epilepsy (20-30%), alternative treatment strategies are needed. Recently a proof-of-principle for a new therapeutic approach was established by the intraventricular delivery of adenosine released from implants of engineered cells. Adenosine-releasing implants were found to be effective in seizure suppression in a rat model of temporal lobe epilepsy. In the present study, activation of the adenosine system was applied as a possible treatment for pharmacoresistant epilepsy. Methods: A mouse model for drug-resistant mesial temporal lobe epilepsy was used, in which recurrent spontaneous seizure activity was induced by a single intrahippocampal injection of kainic acid (KA; 200 ng in 50 nl). Results: After injection of the selective adenosine A,receptor agonist, 2-chloro-N-6-cyclopentyladenosine (CCPA; either 1.5 or 3 mg/kg, i.p.), epileptic discharges determined in EEG recordings were completely suppressed for a period of less than or equal to3.5 h after the injections. Seizure suppression was maintained when 8-sulfophenyltheophylline (8-SPT), a non-brain-permeable adenosine-receptor antagonist, was coinjected systemically with CCPA. In contrast, systemic injection of carbamazepine or vehicle alone did not alter the seizure pattern. Conclusions: This study demonstrates that activation of central adenosine A, receptors leads to the suppression of seizure activity in a mouse model of drug-resistant epilepsy. We conclude that the local delivery of adenosine into the brain is likely to be effective in the control of intractable seizures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据