4.7 Article

Dynamic equivalence between soft- and hard-core Brownian fluids -: art. no. 011405

期刊

PHYSICAL REVIEW E
卷 68, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.68.011405

关键词

-

向作者/读者索取更多资源

In this work, we demonstrate the dynamic equivalence between the members of the family of Brownian fluids whose particles interact through strongly repulsive radially symmetric soft-core potentials. We specifically consider pair potentials proportional to inverse powers of (r/sigma). This equivalence is the dynamic extension of the static equivalence between all these pair potentials and the hard-sphere fluid, assumed in the treatment of soft-core reference potentials in the classical (Weeks-Chandler-Andersen or Barker-Henderson) perturbation theories of simple liquids. In contrast with the strict hard-sphere Brownian system, in the case of soft-sphere potentials the conventional Brownian dynamics algorithm is indeed well defined. We find that, except for small values of nu, and/or very short times, the dynamic properties of all these systems collapse into a single universal curve, upon a well-defined rescaling of the time and distance variables. This family of systems includes the hard-sphere limit. This observation permits a conceptually simple, new, and accurate Brownian dynamics algorithm to simulate the dynamic properties of the hard-sphere model dispersion without hydrodynamic interactions. Such an algorithm consists of the straightforward rescaling of the Brownian-dynamics simulated properties of any of the dynamically equivalent soft-sphere systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据