4.7 Article

Adaptive Mesh Refinement for conservative systems:: multi-dimensional efficiency evaluation

期刊

COMPUTER PHYSICS COMMUNICATIONS
卷 153, 期 3, 页码 317-339

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0010-4655(03)00139-5

关键词

conservation laws; magnetohydrodynamics; Adaptive Mesh Refinement; shock-capturing; computational efficiency

向作者/读者索取更多资源

Obtainable computational efficiency is evaluated when using an Adaptive Mesh Refinement (AMR) strategy in time accurate simulations governed by sets of conservation laws. For a variety of 1D, 2D, and 3D hydro- and magnetohydrodynamic simulations, AMR is used in combination with several shock-capturing, conservative discretization schemes. Solution accuracy and execution times are compared with static grid simulations at the corresponding high resolution and time spent on AMR overhead is reported. Our examples reach corresponding efficiencies of 5 to 20 in multi-dimensional calculations and only 1.5-8% overhead is observed. For AMR calculations of multi-dimensional. magnetohydrodynamic problems, several strategies for controlling the del . B = 0 constraint are examined. Three source term, approaches suitable for cell-centered B representations are shown to be effective. For 2D and 3D calculations where a transition to a more globally turbulent state takes place, it is advocated to use an approximate Riemann solver based discretization at the highest allowed level(s), in combination with the robust Total Variation Diminishing Lax-Friedrichs method on the coarser levels. This level-dependent use of the spatial discretization acts as a computationally efficient, hybrid scheme. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据