4.8 Article

Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold

期刊

BIOMATERIALS
卷 24, 期 16, 页码 2773-2778

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(03)00080-2

关键词

nanocomposite; PLLA; montmorillonite; modulus; biodegradation rate; scaffold

向作者/读者索取更多资源

Inorganic nanosized silicate nanoplatelets were incorporated into biodegradable poly(L-lactic acid) (PLLA) for the purpose of tailoring mechanical stiffness of PLLA porous scaffold systems. Increasing the nucleation density around the foreign body surfaces, the montmorillonite (MMT) nanoplatelets modified with dimethyl dihydrogenated tallow ammonium cations decreased the glass transition temperature and the degree of PLLA crystallinity, which seemingly caused the accelerated biodegradation rate of PLLA nanocomposites due to the enhanced segmental mobility of backbone chains and the expanded amorphous region of PLLA matrix. The tensile modulus was increased from 121.2 MPa of pristine polymer scaffold to 170.1 MPa of MMT/PLLA nanocomposite scaffold (ca. 40% increment) by the addition of small amount of MMT platelets (5.79 vol%) acting as a mechanical reinforcement of polymer chains in the nanoscale molecular level. Overall, the nanotechnology used in this study may be applied to various scaffold systems of biodegradable polymers and hard/soft scaffold structures requiring critical control and design characteristics of mechanical stiffness and biodegradation rate. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据