4.5 Article

A mutation in the membrane subunit of an ABC transporter LolCDE complex causing outer membrane localization of lipoproteins against their inner membrane-specific signals

期刊

MOLECULAR MICROBIOLOGY
卷 49, 期 1, 页码 167-177

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1365-2958.2003.03569.x

关键词

-

向作者/读者索取更多资源

Lipoproteins in Gram-negative bacteria are anchored to the inner or outer membrane via fatty acids attached to the N-terminal cysteine. The residue at position 2 determines the membrane specificity. An ATP binding cassette transporter LolCDE complex releases lipoproteins with residues other than aspartate at position 2 from the inner membrane, whereas those with aspartate at position 2 are rejected by LolCDE and therefore remain in the inner membrane. For further understanding of this rejection mechanism, a novel strategy was developed to select mutants in which lipoproteins with aspartate at position 2 are released. The isolated mutants carried an alanine to proline mutation at position 40 of LolC, a membrane subunit of the LolCDE complex. A significant portion of an inner membrane lipoprotein, L10P(DQ), was localized to the outer membrane when the LolC mutant was expressed. Periplasmic chaperone LolA formed a complex with the released L10P(DQ), which was subsequently incorporated into the outer membrane in a LolB-dependent manner, indicating that neither LolA nor LolB rejects lipoproteins with aspartate at position 2. The amount of the LolC mutant co-purified with LolD and LolE after membrane solubilization was reduced significantly. Taken together, these results indicate that the mutation causes destabilization of the LolCDE complex and concomitantly prevents the accurate recognition of lipoprotein-sorting signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据