4.4 Article

Tissue engineering of perfused microvessels

期刊

MICROVASCULAR RESEARCH
卷 66, 期 1, 页码 59-67

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0026-2862(03)00040-2

关键词

tissue engineering; microvessels; perfusion system

资金

  1. NHLBI NIH HHS [R24 HL 064387] Funding Source: Medline

向作者/读者索取更多资源

One major obstacle toward the creation and survival of larger, three-dimensional tissues is the lack of a vascular network that provides transport of oxygen, nutrients, and metabolic byproducts. Although attempts to create microvasculature in vitro have been described previously (Microcirculation 2 (1995), 377; Tissue Eng. 6 (2000), 105; Ann. NY Accd. Sci. 944 (2001), 443), these methods depend on vascularization of void spaces within the tissue-construct or on the utilization of empty capillary networks by host vessels. In the present study, we examined the possibility of creating perfused microvessels in vitro that can be included in an artificial tissue. First, strands of nylon line with their ends fit into microtubing were positioned within small perfusion chambers. Vascular smooth muscle cells (SMCs) were then seeded onto the nylon strands and tubing. The cells multiplied to form concentric layers. Layer thickness was approximately 100 mum after 21 days and 150 mum after 28 days of culture. The lines were then extracted and the chambers connected to a perfusion system. The vessels were continuously perfused with culture medium over 7 days without failure. Artificial microvessels may prove useful in tissue engineering and as models for vascular research. (C) 2003 Elsevier Science (USA). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据