4.2 Article

Roles of Ser130 and Thr126 in chloride binding and photocycle of pharaonis halorhodopsin

期刊

JOURNAL OF BIOCHEMISTRY
卷 134, 期 1, 页码 151-158

出版社

JAPANESE BIOCHEMICAL SOC
DOI: 10.1093/jb/mvg123

关键词

chloride pump; halorhodopsin; mutation; Natronobacterium pharaonis; photocycle

向作者/读者索取更多资源

Pharaonis halorhodopsin (phR) is an inward light-driven chloride ion pump in Natronobacterium pharaonis. In order to clarify the roles of the Ser130(phR) and Thr126(phR) residues, which correspond to Ser115(shR) and Thr111(shR) of salinarum hR (shR), with regard to their Cl-binding affinity and the photocycle, the wild-type phR, and S130 and T126 mutants were expressed in Escherichia coli cells. The photocycles of the wild-type phR, and S130 and T126 mutants were investigated in the presence of 1 M NaCl. Based on results of kinetic analysis involving singular value decomposition and global fitting, typical photointermediates K, L and O were identified, and the kinetic constants of decay or formation varied depending on the mutant. The photocycle scheme was linear for the wild-type phR, and S130C, S130T and T126V mutants. On the other hand, the S130A mutant showed a branched pathway between the L-hR and L-O steps. The present study revealed the following two facts with respect to the Ser130(phR) residue: 1) The OH group of this residue is important for Cl- ion binding next to the Schiff base nitrogen, and 2) replacement of an Ala residue, which is unable to form a hydrogen bond, results in a branched photocycle. The implication of this branching was discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据