4.6 Article

Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum -: art. no. 014104

期刊

PHYSICAL REVIEW B
卷 68, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.014104

关键词

-

向作者/读者索取更多资源

We explore the apparent discrepancy between experimental data and theoretical calculations of the lattice resistance of bcc tantalum. We present an empirical potential calculation for the temperature dependence of the Peierls stress in this system and an ab initio calculation of the zero-temperature Peierls stress, which employs periodic boundary conditions, those best suited to the study of metallic systems at the electronic-structure level. Our ab initio value for the Peierls stress is over five times larger than current extrapolations of experimental lattice resistance to zero temperature. Although we find that the common techniques for such extrapolation indeed tend to underestimate the zero-temperature limit, the amount of the underestimation we observe is only 10%-20%, leaving open the possibility that mechanisms other than the lattice resistance to motion of an isolated, straight dislocation are important in controlling the process of low-temperature slip.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据