4.5 Article

Near-wall μ-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo

期刊

BIOPHYSICAL JOURNAL
卷 85, 期 1, 页码 637-645

出版社

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(03)74507-X

关键词

-

资金

  1. NHLBI NIH HHS [HL64381] Funding Source: Medline
  2. NIGMS NIH HHS [T32 GM008715, T32 GM 08715-01A1] Funding Source: Medline

向作者/读者索取更多资源

High-resolution near-wall fluorescent microparticle image velocimetry (mu-PIV) was used in mouse cremaster muscle venules in vivo to measure velocity profiles in the red cell-depleted plasma layer near the endothelial lining. mu-PIV data of the instantaneous translational speeds and radial positions of fluorescently labeled microspheres (0.47 mum) in an optical section through the midsagittal plane of each vessel were used to determine fluid particle translational speeds. Regression of a linear velocity distribution based on near-wall fluid-particle speeds consistently revealed a negative intercept when extrapolated to the vessel wall. Based on a detailed three-dimensional analysis of the local fluid dynamics, we estimate a mean effective thickness of similar to0.33 mum for an impermeable endothelial surface layer or similar to0.44 mum assuming the lowest hydraulic resistivity of the layer that is consistent with the observed particle motions. The extent of plasma flow retardation through the layer required to be consistent with our mu-PIV data results in near complete attenuation of fluid shear stress on the endothelial-cell surface. These findings confirm the presence of a hydrodynamically effective endothelial surface layer, and emphasize the need to revise previous concepts of leukocyte adhesion, stress transmission to vascular endothelium, permeability, and mechanotransduction mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据