4.6 Article

Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla:: Role of manganese peroxidase

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 69, 期 7, 页码 3957-3964

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.69.7.3957-3964.2003

关键词

-

向作者/读者索取更多资源

The litter-decomposing basidiomycete Stropharia coronilla, which preferably colonizes grasslands, was found to be capable of metabolizing and mineralizing benzo[a]pyrene (BaP) in liquid culture. Manganese(II) ions (Mn2+) supplied at a concentration of 200 muM stimulated considerably both the conversion and the mineralization of BaP; the fungus metabolized and mineralized about four and twelve times, respectively, more of the BaP in the presence of supplemental Mn2+ than in the basal medium. This stimulating effect could be attributed to the ligninolytic enzyme manganese peroxidase (MnP), whose activity increased after the addition of Mn2+. Crude and purified MnP from S. coronifia oxidized BaP efficiently in a cell-free reaction mixture (in vitro), a process which was enhanced by the surfactant Tween 80. Thus, 100 mg of BaP liter(-1) was converted in an in vitro reaction solution containing 1 U of MnP ml(-1) within 24 h. A clear indication was found that BaP-1,6-quinone was formed as a transient metabolite, which disappeared over the further course of the reaction. The treatment of a mixture of 16 different polycyclic aromatic hydrocarbons (PAHs) selected by the U.S. Environmental Protection Agency as model standards for PAH analysis (total concentration, 320 mg liter(-1)) with MnP resulted in concentration decreases of 10 to 100% for the individual compounds, and again the stimulating effect of Tween 80 was observed. Probably due to their lower ionization potentials, poorly bioavailable, high-molecular-mass PAHs such as BaP, benzo(g,h,i)perylene, and indeno(1,2,3-cd)pyrene were converted to larger extents than low-molecular-mass ones (e.g., phenanthrene and fluoranthene).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据