4.7 Article

Sharp-interface simulation of dendritic growth with convection: benchmarks

期刊

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
卷 46, 期 14, 页码 2615-2627

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0017-9310(03)00038-3

关键词

-

向作者/读者索取更多资源

We present and validate a numerical technique for computing dendritic growth of crystals from pure melts in the presence of forced convection. The Navier-Stokes equations are solved on a fixed Cartesian mesh and a mixed Eulerian-Lagrangian framework is used to treat the immersed phase boundary as a sharp solid-fluid interface. A conservative finite-volume discretization is employed which allows the boundary conditions to be applied exactly at the moving surface. Results are presented for a range of the growth parameters, namely crystalline anisotropy, flow Reynolds number and Prandtl number. Direct comparisons are made between the present results and those obtained with phase-field methods and excellent agreement is obtained. Values for the tip characteristics are tabulated to serve as benchmarks for computations of two-dimensional dendritic growth with convection. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据