4.6 Article

Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00021.2003

关键词

capillary recruitment; nitric oxide; nitric oxide synthase; muscle blood flow

资金

  1. NHLBI NIH HHS [K08 HL-03810] Funding Source: Medline
  2. NIDDK NIH HHS [DK-57878] Funding Source: Medline

向作者/读者索取更多资源

We examined the effects of inhibiting nitric oxide synthase with N-omega-nitro-L-arginine-methyl ester (L-NAME) on total hindlimb blood flow, muscle microvascular recruitment, and hindlimb glucose uptake during euglycemic hyperinsulinemia in vivo in the rat. We used two independent methods to measure microvascular perfusion. In one group of animals, microvascular recruitment was measured using the metabolism of exogenously infused 1-methylxanthine (1-MX), and in a second group contrast-enhanced ultrasound (CEU) was use. Limb glucose uptake was measured by arterial-venous concentration differences after 2 h of insulin infusion. Saline alone did not alter femoral artery flow, glucose uptake, or 1-MX metabolism. Insulin (10 mU.min(-1).kg(-1)) significantly increased hindlimb total blood flow (0.69 +/- 0.02 to 1.22 +/- 0.11 ml/min, P < 0.05), glucose uptake (0.27 +/- 0.05 to 0.95 +/- 0.08 μmol/min, P < 0.05), 1-MX uptake (5.0 +/- 0.5 to 8.5 +/- 1.0 nmol/min, P < 0.05), and skeletal muscle microvascular volume measured by CEU (10.0 +/- 1.6 to 15.0 +/- 1.2 video intensity units, P < 0.05). Addition of L-NAME to insulin completely blocked the effect of insulin on both total limb flow and microvascular recruitment (measured using either 1-MX or CEU) and blunted glucose uptake by 40% (P < 0.05). We conclude that insulin specifically recruits flow to the microvasculture in skeletal muscle via a nitric oxide-dependent pathway and that this may be important to insulin's overall action to regulate glucose disposal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据