4.5 Article

Insulin inhibits extracellular regulated kinase 1/2 phosphorylation in a phosphatidylinositol 3-kinase (PI3) kinase-dependent manner in Neuro2a cells

期刊

JOURNAL OF NEUROCHEMISTRY
卷 86, 期 1, 页码 86-91

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1471-4159.2003.01828.x

关键词

insulin; intracellular; neuron; resistance; signalling

向作者/读者索取更多资源

Insulin signalling is well studied in peripheral tissue, but not in neuronal tissue. To gain more insight into neuronal insulin signalling we examined protein kinase B (PKB) and extracellular regulated kinase 1 and 2 (ERK1/2) regulation in serum-deprived Neuro2a cells. Insulin phosphorylated PKB in a dose-dependent manner but reduced phosphorylation of ERK1/2. Both processes were phosphatidylinositol 3-kinase (PI3K) dependent. Interestingly, blockade of PI3K in combination with insulin induced phosphorylation of ERK1/2. The phosphorylation of ERK1/2 could be blocked with a specific inhibitor of mitogen-activated protein/ERK kinase (MEK), suggesting that it was mediated through the highly conserved Ras-Raf-MEK-ERK1/2 pathway. Prolonged exposure to high concentrations of insulin resulted in a desensitized PI3K-PKB route. The insulin-induced inhibition of ERK1/2 phosphorylation was also diminished when the PI3K-PKB route was desensitized. Blockade of PI3K in combination with insulin, however, still resulted in an unaltered MEK-dependent phosphorylation of ERK1/2. We conclude that PI3K is an important integrator of insulin signalling in Neuro2a cells as it regulates activation of PKB and inhibition of ERK1/2, and is sensitive to the duration of the insulin stimulus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据