4.5 Article

Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 21, 期 4, 页码 697-707

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0736-0266(02)00241-3

关键词

mesenchymal stem cell; apoptosis; wear particles; titanium; zirconia

向作者/读者索取更多资源

The most frequent complication of total joint arthroplasty is periprosthetic osteolysis initiated by an inflammatory response to orthopaedic wear debris, which if left untreated, can result in implant instability and failure, eventually requiring revision surgery. We have previously reported that osteogenic differentiation of human marrow stroma-derived mesenchymal stem cells (hMSCs) is suppressed upon exposure to titanium particles, accompanied by reduced bone sialoprotein (BSP) gene expression, diminished production of collagen type I and BSP, decreased cellular viability and proliferation, and inhibition of extracellular matrix mineralization. In this study, we have further investigated hMSC cytotoxicity upon exposure to submicron particles of commercially pure titanium (cpTi) and zirconium oxide (ZrO2). Our results showed that direct exposure to cpTi and ZrO2 particles compromises cell viability through the induction of apoptosis, eliciting increased levels of the tumor suppressor proteins p53 and p73, in a manner dependent on material composition, particle dosage, and time. Additionally, conditioned medium collected from hMSCs exposed to cpTi particles, but not to ZrO2 particles, is cytotoxic to hMSCs, inducing apoptosis in the absence of particles. These findings demonstrate that exposure to orthopaedically derived wear particles can compromise hMSC viability through the direct and indirect induction of apoptosis. Thus, prolonged in vivo exposure of marrow-derived hMSCs to implant-derived wear debris is likely to reduce the population of viable osteoprogenitor cells, and may contribute to poor periprosthetic bone quality and implant loosening. Published by Elsevier Science Ltd. on behalf of Orthopaedic Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据