4.6 Article

Rho protein-mediated changes in the structure of the actin cytoskeleton regulate human inducible NO synthase gene expression

期刊

EXPERIMENTAL CELL RESEARCH
卷 287, 期 1, 页码 106-115

出版社

ELSEVIER INC
DOI: 10.1016/S0014-4827(03)00129-0

关键词

human inducible NO synthase; expression; actin cytoskeleton; promoter activity; mRNA stability

向作者/读者索取更多资源

Rho proteins (Rho, Rac, Cdc 42) are known to control the organization of the actin cytoskeleton as well as gene expression. Inhibition of Rho proteins by Clostridium difficile toxin B disrupted the F-actin cytoskeleton and enhanced cytokine-induced inducible nitric oxide synthase (iNOS) expression in human epithelial cells. Also specific inhibition by Y-27632 of p160ROCK, which mediates Rho effects on actin fibers, caused a disruption of the actin cytoskeleton and a superinduction of cytokine-induced iNOS expression. Accordingly, direct disruption of the actin cytoskeleton by cytochalasin D, latrunculin B, or jasplakinolide enhanced cytokine-induced iNOS expression. The transcription factor serum response factor (SRF) has been described as mediating actin cytoskeleton-dependent regulation of gene expression. Direct targets of SRF are activating protein 1 (AP1)-dependent genes. All compounds used inhibited SRF- and AP1-dependent reporter gene expression in DLD-1 cells. However, the enhancing effect of the actin cytoskeleton-disrupting compounds on human iNOS promoter activity was much less pronounced than the effect on iNOS mRNA expression. Therefore, besides transcriptional mechanisms, posttranscriptional effects seem to be involved in the regulation of iNOS expression by the above compounds. In conclusion, our data suggest that Rho protein-mediated changes of the actin cytoskeleton negatively modulate the expression of human iNOS. (C) 2003 Elsevier Science (USA). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据