4.7 Review

Optical frequency combs: From frequency metrology to optical phase control

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTQE.2003.819109

关键词

atomic clocks; carrier-envelope phase; femtosecond lasers; frequency control; frequency synthesizers; metrology; nonlinear spectroscopy; optical frequency comb; optical frequency measurement; phase-locking; precision measurement; stabilized lasers; synchronization; ultrafast science

向作者/读者索取更多资源

The merging of continuous wave laser-based precision optical-frequency. metrology with mode-locked ultrafast lasers has led to precision control of the visible and near-infrared frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of a femtosecond optical-frequency comb generator with a regular comb of sharp lines with well-defined frequencies. For a comb with sufficiently broad bandwidth, it is now straightforward to determine the absolute frequencies of all of the comb lines. This ability has revolutionized optical-frequency metrology, synthesis, and optical atomic clocks. Precision femtosecond optical-frequency combs also have a major impact on time-domain applications, including carrier-envelope phase stabilization, synthesis of a single pulse from two independent lasers, nonlinear spectroscopy, and passive amplifiers based on empty external optical cavities. The authors first review the frequency-domain description of a mode-locked laser and the connection between the carrier-envelope phase and the frequency spectrum to provide a basis for understanding how the absolute frequencies can be determined and controlled. Using this understanding, applications in optical-frequency metrology and synthesis and optical atomic clocks are discussed. This is followed by discussions of time-domain experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据