4.6 Article

Attenuation of activity-induced increases in cerebellar blood flow in mice lacking neuronal nitric oxide synthase

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00043.2003

关键词

cerebral circulation; cerebellum; laser-Doppler flowmetry; vasodilation; glutamate

资金

  1. NINDS NIH HHS [NS-31318, NS-38252] Funding Source: Medline

向作者/读者索取更多资源

We used mice deficient in neuronal nitric oxide (NO) synthase (nNOS) to specifically investigate the role of neuronal NO in the increase of cerebellar blood flow (BFcrb) produced by neural activation. Crus II, a region of the cerebellar cortex that receives trigeminal sensory afferents, was activated by low-intensity stimulation of the upper lip (5-25 V, 4-16 Hz) in anesthetized mice. BFcrb was recorded in Crus II by using a laser-Doppler flow probe. In wild-type mice, upper lip stimulation increased BFcrb in the Crus II by 28 +/- 3% (25 V, 10 Hz, n = 6). The rise in BFcrb was attenuated by 73 +/- 3% in nNOS(-/-) mice (P < 0.05, n = 6). The increases in BFcrb produced by superfusion of Crus II with glutamate or by systemic administration of harmaline were also attenuated in nNOS(-/-) mice (P < 0.05). In contrast, the increases in BFcrb produced by topical superfusion of Crus II with acetylcholine or adenosine and the increase in BFcrb produced by hypercapnia were not affected (P < 0.05). The field potentials evoked in the Crus II by upper lip stimulation did not differ between wild-type and nNOS-null mice. These data provide the first nonpharmacological evidence that nNOS-derived NO is a critical link between glutamatergic synaptic activity and blood flow in the activated cerebellum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据