4.4 Article

A multiphase model describing vascular tumour growth

期刊

BULLETIN OF MATHEMATICAL BIOLOGY
卷 65, 期 4, 页码 609-640

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/S0092-8240(03)00027-2

关键词

-

向作者/读者索取更多资源

In this paper we present a new model framework for studying vascular tumour growth, in which the blood vessel density is explicitly considered. Our continuum model comprises conservation of mass and momentum equations for the volume fractions of tumour cells, extracellular material and blood vessels. We include the physical mechanisms that we believe to be dominant, namely birth and death of tumour cells, supply and removal of extracellular fluid via the blood and lymph drainage vessels, angiogenesis and blood vessel occlusion. We suppose that the tumour cells move in order to relieve the increase in mechanical stress caused by their proliferation. We show how to reduce the model to a system of coupled partial differential equations for the volume fraction of tumour cells and blood vessels and the phase averaged velocity of the mixture. We consider possible parameter regimes of the resulting model. We solve the equations numerically in these cases, and discuss the resulting behaviour. The model is able to reproduce tumour structure that is found in vivo in certain cases. Our framework can be easily modified to incorporate the effect of other phases, or to include the effect of drugs. (C) 2003 Society for Mathematical Biology. Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据