4.5 Article

Role of CaM kinase II and ERK activation in thrombin-induced endothelial cell barrier dysfunction

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00460.2001

关键词

thrombin; extracellular signal-regulated kinase; caldesmon; transendothelial electrical resistance

资金

  1. NHLBI NIH HHS [HL-57402, HL-67307, HL-58064, HL-68062, HL-50533] Funding Source: Medline

向作者/读者索取更多资源

We have previously shown that thrombin-induced endothelial cell barrier dysfunction involves cytoskeletal rearrangement and contraction, and we have elucidated the important role of endothelial cell myosin light chain kinase and the actin- and myosin-binding protein caldesmon. We evaluated the contribution of calmodulin (CaM) kinase II and extracellular signal-regulated kinase (ERK) activation in thrombin-mediated bovine pulmonary artery endothelial cell contraction and barrier dysfunction. Similar to thrombin, infection with a constitutively active adenoviral alpha-CaM kinase II construct induced significant ERK activation, indicating that CaM kinase II activation lies upstream of ERK. Thrombin-induced ERK-dependent caldesmon phosphorylation (Ser(789)) was inhibited by either KN-93, a specific CaM kinase II inhibitor, or U0126, an inhibitor of MEK activation. Immunofluorescence microscopy studies revealed phosphocaldesmon colocalization within thrombin-induced actin stress fibers. Pretreatment with either U0126 or KN-93 attenuated thrombin-mediated cytoskeletal rearrangement and evoked declines in transendothelial electrical resistance while reversing thrombin-induced dissociation of myosin from nondenaturing caldesmon immunoprecipitates. These results strongly suggest the involvement of CaM kinase II and ERK activities in thrombin-mediated caldesmon phosphorylation and both contractile and barrier regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据