4.8 Article

Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation

期刊

NATURE
卷 424, 期 6944, 页码 103-107

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature01760

关键词

-

向作者/读者索取更多资源

Activation-induced cytidine deaminase (AID) is a protein required for B cells to undergo class switch recombination and somatic hypermutation (SHM)-two processes essential for producing high-affinity antibodies(1). Purified AID catalyses the deamination of C to U on single-stranded (ss) DNA(2-4). Here, we show in vitro that AID-catalysed C deaminations occur preferentially on 5' WRC sequences in accord with SHM spectra observed in vivo. Although about 98% of DNA clones suffer no mutations, most of the remaining mutated clones have 10-70 C to T transitions per clone. Therefore, AID carries out multiple C deaminations on individual DNA strands, rather than jumping from one strand to another. The avid binding of AID to ssDNA could result from its large net positive charge (+11) at pH 7.0, owing to a basic amino-terminal domain enriched in arginine and lysine. Furthermore, AID exhibits a 15-fold preference for C deamination on the non-transcribed DNA strand exposed by RNA polymerase than the transcribed strand protected as a RNA-DNA hybrid. These deamination results on ssDNA bear relevance to three characteristic features of SHM: preferential mutation at C sites within WRC hotspot sequences, the broad clonal mutagenic heterogeneity of antibody variable regions targeted for mutation(5,6), and the requirement for active transcription to obtain mutagenesis(7),(8).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据