4.7 Article

Simulations of galaxy formation in a Λ cold dark matter universe.: I.: Dynamical and photometric properties of a simulated disk galaxy

期刊

ASTROPHYSICAL JOURNAL
卷 591, 期 2, 页码 499-514

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/375512

关键词

cosmology : theory; dark matter; galaxies : formation; galaxies : structure; methods : numerical

向作者/读者索取更多资源

We present a detailed analysis of the dynamical and photometric properties of a disk galaxy simulated in the Lambda cold dark matter (LambdaCDM) cosmogony. The galaxy is assembled through a number of high-redshift mergers followed by a period of quiescent accretion after z similar to 1 that lead to the formation of two distinct dynamical components: a spheroid of mostly old stars and a rotationally supported disk of younger stars. The surface brightness profile is very well approximated by the superposition of an R-1/4 spheroid and an exponential disk. Each photometric component contributes a similar fraction of the total luminosity of the system, although less than a quarter of the stars form after the last merger episode at z similar to 1. In the optical bands the surface brightness profile is remarkably similar to that of Sab galaxy UGC 615, but the simulated galaxy rotates significantly faster and has a declining rotation curve dominated by the spheroid near the center. The decline in circular velocity is at odds with observation and results from the high concentration of the dark matter and baryonic components, as well as from the relatively high mass-to-light ratio of the stars in the simulation. The simulated galaxy lies similar to1 mag off the I-band Tully-Fisher relation of late-type spirals but seems to be in reasonable agreement with Tully-Fisher data on S0 galaxies. In agreement with previous simulation work, the angular momentum of the luminous component is an order of magnitude lower than that of late-type spirals of similar rotation speed. This again reflects the dominance of the slowly rotating, dense spheroidal component, to which most discrepancies with observation may be traced. On its own, the disk component has properties rather similar to those of late-type spirals: its luminosity, its exponential scale length, and its colors are all comparable to those of galaxy disks of similar rotation speed. This suggests that a different form of feedback than adopted here is required to inhibit the efficient collapse and cooling of gas at high redshift that leads to the formation of the spheroid. Reconciling, without fine-tuning, the properties of disk galaxies with the early collapse and high merging rates characteristic of hierarchical scenarios such as LambdaCDM remains a challenging, yet so far elusive, proposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据