4.6 Article

Experimental characterization and modeling of the reliability of three-terminal dual-damascene Cu interconnect trees

期刊

JOURNAL OF APPLIED PHYSICS
卷 94, 期 2, 页码 1222-1228

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1585119

关键词

-

向作者/读者索取更多资源

Electromigration tests on Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line have been carried out. Like Al-based interconnects, the reliability of a segment in a Cu-based interconnect tree strongly depends on the stress conditions of connected segments. The analytic model based on a nodal analysis developed for Al trees gives a conservative estimate of the lifetime of Cu-based interconnect trees. However, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallization systems. The absence of a conducting electromigration-resistant overlayer in Cu technology and the low critical stress for void nucleation at the Cu/interlevel diffusion barrier interface (e.g., the Cu/Si3N4 interface) leads to different failure modes between Cu and Al interconnects. As a result, the most highly stressed segment in a Cu-based interconnect tree is not always the least reliable. Moreover, the possibility of liner rupture at stressed dual-damascene vias lead to significant differences in tree reliabilities in Cu compared to Al. While an interconnect tree can be treated as a fundamental unit whose reliability is independent of that of other units in Al-based interconnect architectures, interconnect trees cannot be treated as fundamental units for circuit-level reliability analyses for Cu-based interconnects. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据