4.7 Article

Quantum instanton approximation for thermal rate constants of chemical reactions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 119, 期 3, 页码 1329-1342

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1580110

关键词

-

向作者/读者索取更多资源

A quantum mechanical theory for chemical reaction rates is presented which is modeled after the [semiclassical (SC)] instanton approximation. It incorporates the desirable aspects of the instanton picture, which involves only properties of the (SC approximation to the) Boltzmann operator, but corrects its quantitative deficiencies by replacing the SC approximation for the Boltzmann operator by the quantum Boltzmann operator, exp(-betaH). Since a calculation of the quantum Boltzmann operator is feasible for quite complex molecular systems (by Monte Carlo path integral methods), having an accurate rate theory that involves only the Boltzmann operator could be quite useful. The application of this quantum instanton approximation to several one- and two-dimensional model problems illustrates its potential; e.g., it is able to describe thermal rate constants accurately (similar to10-20% error) from high to low temperatures deep in the tunneling regime, and applies equally well to asymmetric and symmetric potentials. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据