4.5 Article

Fluorescence in situ hybridization: past, present and future

期刊

JOURNAL OF CELL SCIENCE
卷 116, 期 14, 页码 2833-2838

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.00633

关键词

FISH; DNA; RNA; fluorescence; imaging; microscopy; hybridization; computer image processing

向作者/读者索取更多资源

Fluorescence in situ hybridization (FISH), the assay of choice for localization of specific nucleic acids sequences in native context, is a 20-year-old technology that has developed continuously. Over its maturation, various methodologies and modifications have been introduced to optimize the detection of DNA and RNA. The pervasiveness of this technique is largely because of its wide variety of applications and the relative ease of implementation and performance of in situ studies. Although the basic principles of FISH have remained unchanged, high-sensitivity detection, simultaneous assay of multiple species, and automated data collection and analysis have advanced the field significantly. The introduction of FISH surpassed previously available technology to become a foremost biological assay. Key methodological advances have allowed facile preparation of low-noise hybridization probes, and technological breakthroughs now permit multi-target visualization and quantitative analysis - both factors that have made FISH accessible to all and applicable to any investigation of nucleic acids. In the future, this technique is likely to have significant further impact on live-cell imaging and on medical diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据