4.6 Article

Ab initio calculations of the lattice dynamics of boron nitride nanotubes -: art. no. 045425

期刊

PHYSICAL REVIEW B
卷 68, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.045425

关键词

-

向作者/读者索取更多资源

We present an extensive first-principles study of the phonons in boron nitride nanotubes using density functional perturbation theory in the local density approximation. Based on the nonsymmorphic rod-group symmetry of the tubes, the Raman- and infrared-active modes at the Gamma point of the one-dimensional Brillouin zone are evaluated. For zigzag and chiral nanotubes, the set of infrared-active modes is a subset of the Raman- active modes. In particular, the radial breathing mode is not only Raman but also infrared active. However, for armchair tubes, the sets of infrared-and Raman- active modes are disjoint. This may serve to spectroscopically distinguish between macroscopic samples of zigzag-chiral and armchair nanotubes. We present the frequencies of the active modes of zigzag, chiral, and armchair tubes as a function of the tube diameter and compare the results with the frequencies obtained by the zone-folding method, i.e., the rolling of a single hexagonal BN sheet into a tube. Except for the high-frequency tangential modes, the zone-folding results are in very good agreement with the ab initio calculations. The radial breathing mode frequency can be derived by folding a sheet of finite width. Finally, we show that the effects of bundling on the phonon frequencies are small. This demonstrates that the obtained results for isolated BN tubes may serve as a basis for an accurate assignment of phonon modes in spectroscopic measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据