4.8 Article

Use of a water-soluble fullerene derivative as precipitating reagent and matrix-assisted laser desorption/ionization matrix to selectively detect charged species in aqueous solutions

期刊

ANALYTICAL CHEMISTRY
卷 75, 期 14, 页码 3587-3595

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac020750m

关键词

-

向作者/读者索取更多资源

A starlike water-soluble fullerene derivative, hexa(sulfon-butyl)fullerene (C-60[(CH2)(4)SO3-](6); HSBF), consisting of a C-60 cage covalently bonded with six negatively charged sulfonate arms, was synthesized and used to selectively precipitate positively charged surfactants, amino acids, peptides, and proteins. The affinity of HSBF to the analytes depends on the charge, structure, and hydrophobic characteristics of the analytes. The ion pair precipitate was easily removed from the solution by centrifugation. After washing, the precipitate was redissolved in the solvent or buffer solution and the analyte was characterized by laser desorption ionization-time-of-flight mass spectrometry (LD-TOF). HSBF shows strong optical absorbance in the UV range, so no additional organic matrix was required to conduct LD-TOF analysis of small analytes. For the solution that contained five quaternary amines differing only in alkyl chain length, HSBF exhibits the highest affinity to the amine with the longest alkyl chain. Only the arginine signal was detected from the solution that contained 14 amino acids. The peptides with arginine as the end groups interacted most strongly with HSBF and could be selectively precipitated from a solution of a mixture of five peptides. The signals associated with a trace amount of charged peptides derived from the digestion of proteins by trypsin were greatly enhanced after concentration with HSBF. Among eight proteins in the sample solution, insulin had the strongest affinity to the HSBF and exhibited the strongest signal on the matrix-assisted laser desorption/ionization mass spectrum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据