4.5 Article

Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 73, 期 2, 页码 176-187

出版社

WILEY-LISS
DOI: 10.1002/jnr.10635

关键词

cytokine; excitotoxin; glial fibrillary acidic protein; kainic acid

资金

  1. NIDA NIH HHS [DA12444, DA12065] Funding Source: Medline
  2. NIMH NIH HHS [MH62261, MH62962, MH45294, MH59745, MH50426] Funding Source: Medline

向作者/读者索取更多资源

Transgenic mice with glial fibrillary acidic protein (GFAP) promoter driven-astrocyte production of the cytokines interleukin-6 (IL-6) and tumor necrosis factor (TNF) were used to determine whether the pre-existing production of these cytokines in vivo might modulate the sensitivity of neurons to excitotoxic agents. Low doses of kainic acid (5 mg/kg) that produced little or no behavioral or electroencephalogram (EEG) alterations in wild type or glial fibrillary acidic protein (GFAP)-TNF animals induced severe tonic-clonic seizures and death in GFAP-IL6 transgenic mice of 2 or 6 months of age. GFAP-IL6 mice were also significantly more sensitive to N-methyl-D-aspartate (NMDA)- but not pilocarpine-induced seizures. Kainic acid uptake in the brain of the GFAP-IL6 mice was higher in the cerebellum but not in other regions. Kainic acid binding in the brain of GFAP-IL6 mice had a similar distribution and density as wild type controls. In the hippocampus of GFAP-IL6 mice that survived low dose kainic,acid, there was no change in the extent of either neurodegeneration or astrocytosis. Immunostaining revealed degenerative changes in gamma aminobutyric acid (GABA)- and parvalbumin-positive neurons in the hippocampus of 2-month-old GFAP-IL6 mice which progressed to the loss of these cells at 6 months of age. Thus, GFAP-IL6 but not GFAP-TNF mice showed markedly enhanced sensitivity to glutamatergic- but not cholinergic-induced seizures and lethality. This may relate, in part, to a compromise of inhibitory interneuron function. Therefore, pre-existing IL-6 production and inflammation in the central nervous system (CNS) not only causes spontaneous neurodegeneration but also synergizes with other neurotoxic insults to induce more severe acute functional neurological impairment. (C) 2003 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据