4.8 Article

Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae

期刊

NUCLEIC ACIDS RESEARCH
卷 31, 期 14, 页码 3909-3917

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkg446

关键词

-

资金

  1. PHS HHS [R01-097714] Funding Source: Medline

向作者/读者索取更多资源

Using Saccharomyces cerevisiae as a model organism, we analyzed the consequences of disrupting mitochondrial function on mutagenesis of the nuclear genome. We measured the frequency of canavanine-resistant colonies as a measure of nuclear mutator phenotype. Our data suggest that mitochondrial dysfunction leads to a nuclear mutator phenotype (i) when oxidative phosphorylation is blocked in wild-type yeast at mitochondrial complex III by antimycin A and (ii) in mutant strains lacking the entire mitochondrial genome (rho(0)) or those with deleted mitochondrial DNA (rho(-)). The nuclear mutation frequencies obtained for antimycin A-treated cells as well as for rho(-) and rho(0) cells were similar to2- to 3-fold higher compared to untreated control and wild-type cells, respectively. Blockage of oxidative phosphorylation by antimycin A treatment led to increased intracellular levels of reactive oxygen species (ROS). In contrast, inactivation of mitochondrial activity (rho(-) and rho(0)) led to decreased intracellular levels of ROS. We also demonstrate that in rho(0) cells the REV1, REV3 and REV7 gene products, all implicated in error-prone translesion DNA synthesis (TLS), mediate mutagenesis in the nuclear genome. However, TLS was not involved in nuclear DNA mutagenesis caused by inhibition of mitochondrial function by antimycin A. Together, our data suggest that mitochondrial dysfunction is mutagenic and multiple pathways are involved in this nuclear mutator phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据